Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579685

RESUMO

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proliferação de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/agonistas , Proteínas de Sinalização YAP/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
2.
Oncogene ; 41(39): 4459-4473, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36008466

RESUMO

Plasticity delineates cancer subtypes with more or less favourable outcomes. In breast cancer, the subtype triple-negative lacks expression of major differentiation markers, e.g., estrogen receptor α (ERα), and its high cellular plasticity results in greater aggressiveness and poorer prognosis than other subtypes. Whether plasticity itself represents a potential vulnerability of cancer cells is not clear. However, we show here that cancer cell plasticity can be exploited to differentiate triple-negative breast cancer (TNBC). Using a high-throughput imaging-based reporter drug screen with 9 501 compounds, we have identified three polo-like kinase 1 (PLK1) inhibitors as major inducers of ERα protein expression and downstream activity in TNBC cells. PLK1 inhibition upregulates a cell differentiation program characterized by increased DNA damage, mitotic arrest, and ultimately cell death. Furthermore, cells surviving PLK1 inhibition have decreased tumorigenic potential, and targeting PLK1 in already established tumours reduces tumour growth both in cell line- and patient-derived xenograft models. In addition, the upregulation of genes upon PLK1 inhibition correlates with their expression in normal breast tissue and with better overall survival in breast cancer patients. Our results indicate that differentiation therapy based on PLK1 inhibition is a potential alternative strategy to treat TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptor alfa de Estrogênio , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
3.
Nucleic Acids Res ; 49(13): e73, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33856484

RESUMO

Antibiotic-resistant pathogens often escape antimicrobial treatment by forming protective biofilms in response to quorum-sensing communication via diffusible autoinducers. Biofilm formation by the nosocomial pathogen methicillin-resistant Staphylococcus aureus (MRSA) is triggered by the quorum-sensor autoinducer-2 (AI-2), whose biosynthesis is mediated by methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) and S-ribosylhomocysteine lyase (LuxS). Here, we present a high-throughput screening platform for small-molecular inhibitors of either enzyme. This platform employs a cell-based assay to report non-toxic, bioavailable and cell-penetrating inhibitors of AI-2 production, utilizing engineered human cells programmed to constitutively secrete AI-2 by tapping into the endogenous methylation cycle via ectopic expression of codon-optimized MTAN and LuxS. Screening of a library of over 5000 commercial compounds yielded 66 hits, including the FDA-licensed cytostatic anti-cancer drug 5-fluorouracil (5-FU). Secondary screening and validation studies showed that 5-FU is a potent quorum-quencher, inhibiting AI-2 production and release by MRSA, Staphylococcus epidermidis, Escherichia coli and Vibrio harveyi. 5-FU efficiently reduced adherence and blocked biofilm formation of MRSA in vitro at an order-of-magnitude-lower concentration than that clinically relevant for anti-cancer therapy. Furthermore, 5-FU reestablished antibiotic susceptibility and enabled daptomycin-mediated prevention and clearance of MRSA infection in a mouse model of human implant-associated infection.


Assuntos
Biofilmes/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fluoruracila/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Animais , Proteínas de Bactérias/antagonistas & inibidores , Liases de Carbono-Enxofre/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Feminino , Fluoruracila/uso terapêutico , Células HEK293 , Homosserina/análogos & derivados , Homosserina/biossíntese , Humanos , Lactonas , Staphylococcus aureus Resistente à Meticilina/metabolismo , Camundongos Endogâmicos C57BL , N-Glicosil Hidrolases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Infecções Estafilocócicas/prevenção & controle
4.
J Biomol Screen ; 14(1): 59-65, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19171921

RESUMO

High-content screening (HCS), a technology based on subcellular imaging by automated microscopy and sophisticated image analysis, has emerged as an important platform in small-molecule screening for early drug discovery. To validate a subcellular imaging assay for primary screening campaigns, an HCS assay was compared with a non-image-based readout in terms of variability and sensitivity. A study was performed monitoring the accumulation of the forkhead transcription factor of the O subfamily (FOXO3a) coupled with green fluorescent protein in the nucleus of human osteosarcoma (U-2 OS) cells. In addition, the transcription of a luciferase gene coupled with a FOXO3a-responsive promoter was monitored. This report demonstrates that both assay formats show good reproducibility in primary and concentration response screening despite differences in statistical assay quality. In primary screening, the correlation of compound activity between the 2 assays was low, in contrast to the good correlation of the IC(50) values of confirmed compounds. Furthermore, the high-content imaging assay showed a mean shift of 2.63-fold in IC(50) values compared with the reporter gene assay. No chemical scaffold was specifically found with 1 of the technologies only, however these results validate the HCS technology against established assays for screening of new molecular entities.


Assuntos
Núcleo Celular/metabolismo , Genes Reporter/genética , Luciferases/análise , Luciferases/genética , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Humanos , Luciferases/metabolismo , Sensibilidade e Especificidade
5.
Assay Drug Dev Technol ; 5(3): 363-72, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17638536

RESUMO

Time-resolved (TR) fluorescence resonance energy transfer (FRET) is a widely accepted technology for high throughput screening (HTS), being able to detect and quantify the interactions of specific biomolecules in a homogeneous format. TR-FRET has several advantages for HTS applications that reduce assay artifacts such as compound interference. However, in some cases artifacts due to compound autofluorescence, color quenching, or signal stability are still observed. This report presents strategies addressing these issues by several means. One recommendation is the recording and visualization of differences in the donor/acceptor fluorescence, which allows the identification of compound artifacts. Another suggestion is to adjust the time delay, between excitation and recording of the fluorescence, in order to reduce compound interference. Furthermore, configuring the assay to allow the TR-FRET measurement to be taken at different time points, creating a reaction time course, allows background correction for each sample. Finally, the optimization of the FRET pair, to ensure assay signal stability under screening conditions, can improve the assay quality. This report presents examples of how these simple steps can be applied to enhance the quality of TR-FRET screening campaigns.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Artefatos , Relação Dose-Resposta a Droga , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...